Design Engineering

UAlberta team hopes new tech could be used to 4D print human organs

Staff   

Additive Manufacturing Medical 4D printing University of Alberta

The team is able to incorporate biological function as an intrinsic property in the devices they print with a new class of light-curable bio-nano ink.

Today, additive manufacturing is used in a number of different industries including manufacturing, aerospace, automotive and medical.  A team of University of Alberta Ingenuity Lab researchers are hoping their work will help push the boundaries of 3D printing to develop functional human organs.

4D printing, bio technology U Alberta

Chemical engineering researcher Stella Mathews holds a 4D printed leaf that acts like a hydrogen fuel cell when submerged in water and exposed to ultraviolet light. (Photo: Michael Brown)

The team has developed a new take on 3D printing, allowing researchers to manufacture items that also have a biological function.

“We have expanded the set of tools to enable the incorporation of biological function as an intrinsic property in the devices we print with a new class of light-curable bio-nano ink,” said Stella Mathews, a chemical engineering researcher. “We call it 4D printing and it is the first step towards tissue engineering.”

Matthews and her group successfully 3D printed a resin made of silver nanoparticles, carbon nanotubes and membrane proteins that, when submerged in water and irradiated with UV light, splits water molecules to generate hydrogen—essentially recreating the inner workings of a hydrogen fuel cell.

Advertisement

“When you irradiate the protein inside with UV, it generates a proton, which reacts with the silver nanoparticles to split water and generate hydrogen,” said Mathews. The bio-nano ink the team designed relies on a combination of materials, stability and geometry that can be controlled inside an engineered space.

Though this type of hydrogen fuel cell already exists on the market, the ability to 3D print this technology is new.

Mathews said the destiny of this technology lies not within fuel cells but within the ability to print objects that can mimic complex natural mechanisms, such as photosynthesis in plants or processes in the human body.

Mathews envisions a nearer future where physicians are able to print off replacement parts such as a knee meniscus, for example.

“We would print it with a material that has the mechanical properties that can withstand the pressure of the bones, as well as have some factors that can promote cell adhesion, all while preventing the body’s immune system from rejecting the meniscus,” she said. “But this is only phase one of many.

“We are very excited to make this finding that we believe to be the first step towards the journey of miles.”

The study, which was started by Mathews under the supervision of former Ingenuity Lab director Carlo Montemagno, was published in RSC Advances.

www.cme.engineering.ualberta.ca

Advertisement

Stories continue below

Print this page

Related Stories